Poster: Asynchronous Federated Learning Library and
Benchmark with AFL-Lib

Boyi Liu Shuyuan Li* Zimu Zhou
City University of Hong Kong City University of Hong Kong City University of Hong Kong
SKLCCSE, Beihang University shuyuan.li@cityu.edu.hk zimuzhou@cityu.edu.hk
boy.liu@my.cityu.edu.hk
Shuo Kang Yiming Ma Yongxin Tong
SKLCCSE, Beihang University SKLCCSE, Beihang University SKLCCSE, Beihang University
kangshuo@buaa.edu.cn ma.yiming@buaa.edu.cn yxtong@buaa.edu.cn

Abstract

Asynchronous Federated Learning (AFL) emerges as a prac-
tical paradigm for collaborative model training across IoT
devices with heterogeneous compute capabilities, network
bandwidth, and online availability. Yet AFL research still
lacks a unified, easy-to-use platform for reproducible exper-
imentation under such system configurations. We present
AFL-Lib, the first open-source library and benchmark de-
signed for AFL. It allows researchers to flexibly configure
device types, network conditions, and availability patterns
to emulate the system heterogeneity that gives rise to model
staleness, a key factor affecting AFL algorithm design. Be-
yond system-level settings, AFL-Lib supports plug-in mod-
ules for personalized and multi-modal federated training, en-
abling exploration of the interplay between system and data
heterogeneity. AFL-Lib implements 10 state-of-the-art AFL
algorithms and 4 synchronous baselines, and integrates 12
datasets spanning image, text, and sensor. We will continue
to expand AFL-Lib with new algorithms, datasets, and fea-
tures to support ongoing AFL research. All code and data are
publicly available at https://github.com/boyi-liu/AFL-Lib.

CCS Concepts

« Computing methodologies — Learning paradigms.

“Equal contribution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ACM MOBICOM °25, November 4-8, 2025, Hong Kong, China

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1129-9/2025/11
https://doi.org/10.1145/3680207.3765660

Keywords

Asynchronous Federated Learning; System Heterogeneity;
Data Heterogeneity

ACM Reference Format:

Boyi Liu, Shuyuan Li, Zimu Zhou, Shuo Kang, Yiming Ma, and Yongxin
Tong. 2025. Poster: Asynchronous Federated Learning Library and
Benchmark with AFL-Lib. In The 31st Annual International Confer-
ence on Mobile Computing and Networking (ACM MOBICOM °25),
November 4-8, 2025, Hong Kong, China. ACM, New York, NY, USA,

3 pages. https://doi.org/10.1145/3680207.3765660

1 Introduction

Asynchronous Federated Learning (AFL) [6] is an emerg-
ing paradigm for privacy-preserving and communication-
efficient model training across IoT devices. Unlike synchro-
nous FL [2], AFL allows devices to send updates indepen-
dently, avoiding delays caused by slow or unavailable clients.
This makes AFL well-suited for IoT environments, where sys-
tem heterogeneity is prevalent due to variations in compute
power, network bandwidth, and device availability [4].

While AFL addresses inefficiencies in synchronous FL,
existing research lacks a unified benchmark that combines
algorithmic design with system configurations. Prior AFL
studies and general-purposed FL frameworks abstract asyn-
chrony as arbitrary staleness patterns, without linking them
to the underlying system-level causes. This limits the end-to-
end evaluation and practical development of AFL algorithms
for real-world IoT deployments.

To bridge this gap, we present AFL-Lib, the first open-
source library and benchmark tailored for AFL. AFL-Lib
enables fine-grained configuration of system heterogeneity,
allowing researchers to simulate diverse compute capabilities
(e.g., Jetson TX2, Jetson Nano, Raspberry Pi), communica-
tion speeds (e.g., Wi-Fi, 4G, 5G), and device availability (via
customizable dropout schedules). These configurations can
be specified with just a few lines of code.

https://github.com/boyi-liu/AFL-Lib
https://doi.org/10.1145/3680207.3765660
https://doi.org/10.1145/3680207.3765660

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

i AFL-Lib i
i Workflow 1
1 I sample I I downlink I I client_update I :
1

1 I uplink I aggregate I I update_status I :
1

i Algorithm :
: Synchronous FL Asynchronous FL :
: I FedAvg ”FedProxl IFedAsyncl I FedBuff ”ASO-FedI--- :
\ 1
i Task 1
: II image |[text |[sensor | H multi-modal l :
: System :
: IHetero Device I X2 H Nano I ” Device Dropout l i
: IHeteroCommunication [wiri | [56][4 Il:
1

Figure 1: AFL-Lib overview.

Beyond system-level realism, AFL-Lib includes support
for personalization [1] and multi-modality [3], two under-
explored but critical aspects of AFL for IoT applications.
We implement AFL-Lib with a sequential device simulation
pipeline that runs efficiently on a single GPU, lowering the
barrier for reproducible experimentation.

The main contributions of AFL-Lib are:

e Flexible configuration of device, communication, and
availability heterogeneity to simulate realistic system-
induced staleness in AFL.

e Support for personalization and multi-modality to study
the interplay between system and data heterogeneity.

e Integration of 10 leading AFL algorithms, 4 synchro-
nous baselines, and 12 datasets across image, text, sen-
sor, and multi-modal domains.

2 AFL-Lib
2.1 Overview

AFL-Lib simulates asynchronous federated learning (AFL)
in the classic client-server architecture. Whenever a client
completes local training, it immediately uploads its update.
The server aggregates the update into the global model and
returns the refreshed model to the client. No round-level
client synchronization is required.

AFL-Lib decomposes the AFL workflow into six modu-
lar stages (see Fig. 1). (1) sample: Select a client and mark
it as sampled. (2) downlink: Transmit the current global
model to the selected client. (3) client_update: Perform
local training with the specified compute capabilities. (4)
uplink: Upload the model update to the server with the
given communication budget. (5) aggregate: Integrate the
received update into the global model using user-defined
model aggregation strategies. (6) update_status: update
the client’s state (e.g., clients’ staleness) before the next it-
eration. Each stage is modular and extensible via Python

Boyi Liu et al.

interfaces, allowing researchers to easily modify one compo-
nent without rewriting the entire pipeline. AFL-Lib adopts
a sequential simulation strategy that runs clients one at a
time on a single GPU, while preserving the logical timing
and asynchrony of real deployments. This design ensures
reproducibility and lowers the barrier to experimentation on
common GPU platforms.

Beyond the modular architecture, AFL-Lib offers the fol-
lowing features.

e System heterogeneity configuration. Researchers can
assign per-client compute profiles, network conditions,
and availability to model system-induced staleness.

e Advanced support for data heterogeneity. AFL-Lib pro-
vides built-in modules for personalized and multi-modal
model training, facilitating research on the interaction
between system- and data-level heterogeneity.

2.2 Key Features

System Heterogeneity Configuration. Instead of assign-
ing staleness values at random, AFL-Lib derives staleness
from its three system-level causes: compute latency, network
latency, and device availability.

e Device type: Profiles for three representative IoT de-
vices (Jetson TX2, Jetson Nano, and Raspberry Pi) that
capture per-epoch training time based on real-world
benchmarking data [5].

e Communication speed: Define uplink/downlink band-

widths based on Wi-Fi, 4G, and 5G networks, which

translate into transmission delays during the downlink
and uplink stages.

Device availability: Support probabilistic dropout where

clients may temporarily go offline, mimicking power-

off or intermittent connectivity.

These factors can be configured by editing a YAML file below.

dev: # device type config
dev_prop: 111 # jJetson TX2, Jetson Nano, Raspberry Pi

1
2

3

4 comm: # communication speed config
5 comm_prop: 111 # WiFi, 4G, 5G
6

dropout: # device availability —config
8 drop_prob: 0.1

Interplay with Data Heterogeneity. While AFL is pri-
marily designed to address staleness caused by system het-
erogeneity, practical IoT deployments must also tackle data
heterogeneity, where clients hold non-IID and multi-modal
data. To support research at the intersection of system and
data challenges, AFL-Lib includes native support for two key
data-centric features: personalization and multi-modality.

Poster: Asynchronous Federated Learning Library and Benchmark with AFL-Lib

e Personalization. AFL-Lib implements four approaches,
architecture-, regularization-, mask-, and clustering-
based personalization. Each can be activated via mini-
mal code changes. For example, architecture-based per-
sonalization requires a single variable (p_keys) to de-
fine which model components remain client-specific.

o Multi-modality. AFL-Lib provides built-in support for
multi-modal datasets spanning vision, text, and sensor
modalities. It includes flexible fusion strategies such as
intermediate and late fusion, allowing users to specify
how modalities interact during training.

These features enable researchers to study how personaliza-
tion and multi-modal learning behave under asynchronous
conditions, an area largely unexplored in prior AFL work.

3 Benchmarks

3.1 Algorithm and Dataset Integration
AFL-Lib integrates a broad and diverse set of algorithms.

o Synchronous FL: FedAvg, FedProx, SCAFFOLD, MOON.
e Asynchronous FL: FedAsync, FedBuff, ASO-Fed, PORT,
Pisces, AsyncDrop, FedAC, DAAFL, FADAS, CA2FL.

To our knowledge, AFL-Lib is the first platform to support
10 AFL methods under a common interface, enabling repro-
ducible comparisons across heterogeneous settings.

In addition, AFL-Lib integrates 10 datasets spanning im-
age (MNIST, EMNIST, FashionMNIST, CIFAR-10, CIFAR-100,
SVHN, TinyImageNet), text (AGNews, ShakeSpeare), sen-
sor (IMU, HARBox), and multi-modal domains (CREMAD),
providing representative tasks for IoT-centric evaluation.

3.2 Micro-Benchmark Study

We benchmark all 10 AFL algorithms in AFL-Lib on MNIST,
CIFAR-10, and CIFAR-100 under Dirichlet non-IID (« = 1.0),
tracking test accuracy and normalized convergence time.
Personalization is tested with client-specific heads and a =
0.1. An MLP is applied to MNIST, and a CNN is applied to
CIFAR-10 and CIFAR-100. We model device heterogeneity
using a 1:1:1 ratio of Jetson TX2, Jetson Nano and Raspberry
Pi profiles, and network heterogeneity using Wi-Fi, 4G and
5G configurations in the same proportion. A summary is
reported in Fig. 2.

We observe that buffering-based methods (e.g., FedBuff,
PORT, Pisces) achieve faster convergence under non-IID con-
ditions, while dropout-based algorithms (e.g., AsyncDrop)
are more robust to high staleness and personalization.

4 Conclusion

We present AFL-Lib, the first open-source library and bench-
mark dedicated to asynchronous federated learning. By mod-
eling system heterogeneity through configurable compute,

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

@® FedAsync A FedBuff WV Pisces FedAC FADAS
ASO-Fed 4 PORT Y Async-Drop P DAAFL ©® CA2FL

MNIST (a=1.0) CIFAR-10 (a=1.0) CIFAR-100 (a=1.0)

goso{ % g £

S S5l @ S

2925 350 >

e \ [g1s

3 900 3 . v

8 S 40 o S0

<ars £ < nm < -
025 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Normalized Time Cost Normalized Time Cost Normalized Time Cost

MNIST (a=0.1) CIFAR-10 (a=0.1) CIFAR-100 (a=0.1)

. - - 4 *

X900 < @ X5 ' ® % g []

4 A 4 S 40{ @ A

S815 9 9

g 85.0 ad 3 809 P‘ g L8

< < <

82.5

T T T 75 T T T 3 T T T
0.4 0.6 0.8 1.0 085 090 095 1.00 0.7 0.8 0.9 1.0
Normalized Time Cost Normalized Time Cost Normalized Time Cost

Figure 2: Accuracy v.s. normalized convergence time of
10 AFL algorithms. Upper: w/o personalization; Lower:
with personalization.

communication, and availability profiles, and supporting
data heterogeneity via personalization and multi-modality,
AFL-Lib enables end-to-end, reproducible AFL research. With
10 AFL algorithms, 12 datasets, and modular simulation sup-
port, AFL-Lib provides a practical and extensible platform for
evaluating and advancing AFL methods. We will continue
to expand the library with new algorithms, datasets, and
features to support the growing needs of the community.

Acknowledgments

This work was partially supported by National Science Foun-
dation of China (NSFC) (Grant Nos. 62425202, U21A20516,
62336003), the Beijing Natural Science Foundation (Z230001),
the Fundamental Research Funds for the Central Universities
No. JK2024-03, the Didi Collaborative Research Program and
the State Key Laboratory of Complex & Critical Software
Environment (SKLCCSE). Zimu Zhou’s research is supported
by CityU APRC grant (No. 9610633). Zimu Zhou and Yongxin
Tong are the corresponding authors.

References

[1] Boyi Liu, Yiming Ma, Zimu Zhou, Yexuan Shi, Shuyuan Li, and Yongxin
Tong. 2024. CASA: Clustered Federated Learning with Asynchronous
Clients. In KDD. 1851-1862.

[2] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep

networks from decentralized data. In AISTATS. 1273-1282.

Xiaomin Ouyang, Zhiyuan Xie, Heming Fu, Sitong Cheng, Li Pan, Nei-

wen Ling, Guoliang Xing, Jiayu Zhou, and Jianwei Huang. 2023. Har-

mony: Heterogeneous multi-modal federated learning through disen-

tangled model training. In MobiSys. 530-543.

Kilian Pfeiffer, Martin Rapp, Ramin Khalili, and Jorg Henkel. 2023. Fed-

erated learning for computationally constrained heterogeneous devices:

A survey. Comput. Surveys 55, 14s (2023), 1-27.

[5] Ahmet Ali Siizen, Burhan Duman, and Betiil Sen. 2020. Benchmark
analysis of jetson tx2, jetson nano and raspberry pi using deep-cnn. In
HORA. 1-5.

[6] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous
federated optimization. arXiv preprint arXiv:1903.03934 (2019).

[3

—_

[4

flan)

	Abstract
	1 Introduction
	2 AFL-Lib
	2.1 Overview
	2.2 Key Features

	3 Benchmarks
	3.1 Algorithm and Dataset Integration
	3.2 Micro-Benchmark Study

	4 Conclusion
	References

